If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+60x-180=0
a = 2; b = 60; c = -180;
Δ = b2-4ac
Δ = 602-4·2·(-180)
Δ = 5040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5040}=\sqrt{144*35}=\sqrt{144}*\sqrt{35}=12\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{35}}{2*2}=\frac{-60-12\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{35}}{2*2}=\frac{-60+12\sqrt{35}}{4} $
| x/3-5=55 | | 2+16=-2(5x-9) | | -5(5n+3)+1=111 | | 3/5x-2=2/3 | | 5+2+6=x+10 | | -7n+4n=-12 | | 3x+(4-x)=8 | | 17=7-6/5t | | -2(x+4)=-2(x+4)-6 | | 7x+7(-3x-3)=-x+31 | | 3y=1y+2 | | 39-8b=-5b-5(4b-1) | | n+34=3 | | 4x+4+9=25 | | 77x+13=77+13 | | 9a=6(a-10) | | -4n-8n+12=23 | | x-15=3x+7 | | -3x+14=38 | | 7x-8=10x+3 | | 7x-(-6x-3)=39+7x | | y=$3600-0.8y | | n-(-12)=40 | | m-42=-18 | | 25+10c=100 | | 2x-(5x+9)=2x-44 | | A=$3600-0.8y | | 6x+8x-8=11x+13 | | -17+26=-3(x+9) | | 5.2+x=46 | | 3(210+15x)=610+50x | | 8-7(2-2x)=-90 |